Ibuprofen administration during endurance training cancels running-distance-dependent adaptations of skeletal muscle in mice.

نویسندگان

  • M Machida
  • T Takemasa
چکیده

Exercise training induces many adaptations in skeletal muscle, representative examples of which include an increase in the IIa myofibre and an increase in the capillary-to-fibre ratio (C:F ratio). Moreover, these phenomena are thought to be dependent on running distance. Ibuprofen is one non-steroidal anti-inflammatory drug that is often used as an analgesic, but its effect on skeletal muscle adaptation during endurance training is unclear. In the present study, therefore, we administered ibuprofen to mice during running wheel exercise for four weeks, and examined its effects on the increase in the IIa myofibre and the C:F ratio in skeletal muscle. We observed a significant increase of the IIa myofibre and C:F ratio even in the presence of ibuprofen. Moreover, in untreated mice, there was a significant positive and strong correlation between these parameters and running distance. These results indicate that the increase in the IIa myofibre and the C:F ratio in skeletal muscle usually depend on running distance. Interestingly, we observed no significant correlation between these parameters and running distance in ibuprofen-administered mice. Moreover, we found no significant increase of these parameters when the running distance was significantly increased, in comparison with untreated mice. These results indicate that ibuprofen administration during endurance training cancels running-distance-dependent adaptations in skeletal muscle. This suggests that even if ibuprofen administration facilitates longer-distance running, no further effects of training on skeletal muscle can be expected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle metabolic adaptations to endurance exercise training are attainable in mice with simvastatin treatment

We tested the hypothesis that a 6-week regimen of simvastatin would attenuate skeletal muscle adaptation to low-intensity exercise. Male C57BL/6J wildtype mice were subjected to 6-weeks of voluntary wheel running or normal cage activities with or without simvastatin treatment (20 mg/kg/d, n = 7-8 per group). Adaptations in in vivo fatigue resistance were determined by a treadmill running test, ...

متن کامل

PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were rem...

متن کامل

AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle.

Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5'-AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training-induced increases in exercise capacity and expression of metabolic proteins, as well as acute exe...

متن کامل

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.

A recent study demonstrated that heat stress induces mitochondrial biogenesis in C2C12 myotubes, thereby implying that heat stress may be an effective treatment to enhance endurance training-induced mitochondrial adaptations in skeletal muscle. However, whether heat stress actually induces mitochondrial adaptations in skeletal muscle in vivo is unclear. In the present study, we report the novel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physiology and pharmacology : an official journal of the Polish Physiological Society

دوره 61 5  شماره 

صفحات  -

تاریخ انتشار 2010